
c

i

P
-.I?

D e p a r t m e n t of C o m p u t e r Science -7”
University of Illinois LJ

Andrew S. Gr imshaw and Jane W. S. Liu
1304 W. Springfield Avenue

.f .
..

U r b a n a , Illinois 61801
Abstract

This paper describes Mentat, an object-
oriented macro data-flow system. The
objective of Mentat is to provide an easy-to-
use, transparent mechanism to exploit
parallelism. Mentat meets these objectives by
combining a data-driven computation model,
the macro data-flow model, with the object-
oriented programming paradigm. In this
paper we provide a high-level view of Mentat
including the macro data-flow model,
Mentat’s graph represen tation mechanism
called future lists, the Mentat programming
language, the Mentat virtual machine, and the
status of the implementation of a prototype
Mentat system.

1. Introduction

would: I) support high degrees of parallelism,
2) not require a complex c r centralized control
mechanism, and 3) make it easy to program
distributed and parallel applications. The
primary innovations of Mentat are threefold.
First. we have combined a data-driven
computation model with the object-oriented
programming paradigm. Second, we have
developed a method for representing program
graphs that supports dynamic graphs and
permits decentralized control. Third, we have
developed a mechanism transparent t o the
programmer that automatically detects da t a
flow at run-time and constructs dynamic
program graphs for programs written in a
sequential object-oriented language.

In this paper we present a high level view
of the Mentat system and discuss preliminary

In recent years, there has been an results and progress made to date. In Section
increased interest in exploiting new 2 the principle features of the Mentat design
architectures that offer higher performance via are discussed: the macro data-flow model of
parallelism. The new architectures include computation, future lists, and the Mentat
distributed systems such as those built around programming language. An example is
wide-band local networks, multicomputer presented to illustrate how data flow is
systems such as hypercubes [l], and automatically detected at run-time. Section 3
multiprocessor systems such as the Encore discusses an abstract view of the system
Multimax [2] and the Balance Sequent [3]. architecture. Section 4 discusses the Mentat
While the hardware capabilities of these virtual machine that has been constructed and
systems have increased significantly, the preliminary results obtained by executing
software methodologies needed to program Gaussian elimination on the machine. Section
them have not advanced as rapidly. 5 contains a summary and discusses the future

This paper describes an object-oriented, direction of research.
macro data-flow system, called Mentat. The
objective of Mentat is t o provide an easy-to- 2. Mentat Overview
use, transparent mechanism to exploit In this section we briefly present the
parallelism. Toward this end we formulated macro data-flow model, the model of
three major design goals. The Mentat system computation upon which Mentat is based. We

then present futures and future lists, the
A Thii work waa partially supported by NASA Contract graph representation technique used by

Mentat, and describe how program objects are
NO NAG 1-613

(N A S A - C D - l b h l 5 4) THE MFNTAT PROGQAMMIhG N90-70380
LANGUAGF A W AKGHTTECTUSE (Illinois U n i v .)
12 p

uncl as
O O / b l 0 2 5 2 3 9 6

e -

*.

mapped onto macro data-flow actors. The
programming language used to construct
Mentat programs is an extended C++ [4].
The aspects of the Mentat language that
distinguish it from C++ are discussed.

2.1. Macro Data Flow
To satisfy the design goals of Mentat, we

needed a model of computation that would
support a n appropriate degree of parallelism
and not require a complex control mechanism.
The data-flow model [5-10! was initially
examined because of the high degrees of
parallelism that can be easily achieved and
because of the intuitive ease with which it
maps onto message passing systems. However,
the traditional data-flow model's
shortcomings, small computation granularity
(11,121 and determinism, quickly became
apparent. These two shortcomings led us to
propose the macro data-flow model as an
alternative to the traditional data-flow model.

The macro data-flow model 113-151 is an
extended data-flow model with three principle
differences. First, the granularity of the
actors is considerably larger. This provides
the flexibility to ch'oose an appropriate degree
of parallelism. Second, some actors can
maintain state information between firings.
These actors are called persistent actors.
Persistent actors provide an effective way to
model side effects and non-determinism.
Third, the structure of macro data-flow
program graphs is not fixed at compile time.
Instead, graphs can grow by the run-time
elaboration of graph nodes into arbitrary
subgraphs.

Macro uctors are large-grain actors that
perform high-level functions such as Gaussian
elimination or FFT instead of individual
machine instructions. The important
characteristic of macro actors is t ha t they are
sufficiently computationally intensive, i.e.,
large grain. How computationally intensive is
sufficient depends on the speed and latency of
the communication channels. If the
communication channels are relatively slow,
then very large grains of computation are

required. If the communication channels are
very fast, smaller grains may suffice.

Some of the macro actors are regular
uctors. They are the same as actors in the
traditional data-flow model. Specifically, all
regular actors of a given type are functionally
equivalent. A regular actor is enabled and
may execute when all its input tokens are
available. I t performs some computation,
generating output tokens that depend only on
its input tokens. It may maintain internal
state information during the course of a single
execution. Information is saved during the
performance of a function in much the same
manner that scratch registers are used during
a hardware multiply. However, no state
information is preserved from one execution to
another; they are pure functions.

Some macro actors are persistent actors.
A persistent actor maintains state information
that is preserved from one execution t o the
next. Hence the output tokens generated by a
persistent actor during different executions are
not necessarily the same for the same input
tokens. Since different instances of a
particular persistent actor type can be in
different internal states, they are not identical.

A macro data-flow graph is a high-level
view of a program. Nodes in this graph are
macro actors. Hereafter, by actors, we mean
macro actors. There is an arc from one actor
to another when there is data dependency
between them. However, by providing
persistent actors, arcs are no longer the only
way t o specify data dependencies between
computation primitives carried out by the
system. Persistent actors provide us with a
way to model information transfer between
actors in different programs. The concept of
persistent actors is similar t o that of monitors
[IS! and resource managers L17,.

2.2. Program Graphs and Future Lists
In all systems based on the data-flow

model of computation some mechanism is
needed to represent program graphs and to
control their execution. Traditional data-flow
systems are either static or dynamic .%lo.

In static systems the topology of the data-flow
graph, and hence the execution pattern, is
fixed at compile time. Dynamic systems allow
multiple copies of a particular subgraph to be
instantiated at run-time, e.g., multiple loop
iterations or recursion. Thus, in a dynamic
system multiple instances of the same
subgraph may be executing concurrently. The
dynamic instantiation of subgraphs is often
implemented by labeling tokens with iteration
or instance information. However, in both
static and dynamic systems, the overall
topology of each data-flow graph is fixed and
is generated at compile time. This approach is
adequate for traditional data-flow programs
because each actor forwards its output tokens
to a predetermined set of actors.

When designing the program graph
representation and control scheme for Mentat
we looked for a mechanism that would
support: 1) decentralized control, 2) context-
independence, and 3) dynamic binding and
elaboration of vertices into nested subgraphs.
Decentralized control is important in order t o
avoid the bottleneck a centralized control
point would create. However, an overly
complex distributed control can also place a
heavy burden on the interconnection network,
as well as the local hosts. We wanted a fairly
simple decentralized scheme in which program
graphs need not be fully replicated, and
program subgraphs could be scheduled for
remote execution without requiring any
further control by the scheduling agent. For
example, host A should be able to schedule
subgraph G on host B and then be
unconcerned as t o how or where host B
chooses to execute the subgraph G. The
graph representation and control scheme
should also allow actors to execute in a
context-independent manner: actors need not
be aware of from whom their arguments
come, or to where their results are to be sent.
This contrasts with systems and languages
such as Occam '18 or CSP 119' in which
entities are fully aware of their
com munication partners. Context-
independence lets actors be more readily

reusable.
Program graphs with static topologies

are inadequate for macro data-flow systems
and object-oriented languages for three
reasons. The first reason is that macro data-
flow actors may be persistent and unbound a t
compile time. Each instance of a persistent
actor must be differentiated from all other
instances, and it may not be possible to know
until run time which instance of a persistent
actor is used by the program. Therefore, it is
not possible to associate each node of the
graph with a particular instance of the
required actor. Enumerating all possible
instances is not feasible because the instance
actually used may not exist a t compile or load
time.

The second reason that static topologies
are inadequate follows from our use of the
object-oriented paradigm. Static topology
implies that the types of objects can be
determined at compile time so that the
subgraphs that implement their function can
be included in the program graph. However, in
object-oriented languages, i t will often not be
possible to know even the type of object in
use. For instance, in Smalltalk [20], we know
only that the object supports some method.
Exactly how the method is implemented, Le.,
its subgraph, cannot be determined until run-
time when its type is known. Thus we must
be able to delay the binding of subgraphs for
method implementation until run-time.
Providing dynamic graph elaboration of
actors into subgraphs satisfies this need.

The third reason is that when the
topology of the graph is static the granularity
of computation is reduced, and the
performance will suffer. To see why the
granularity is reduced we examine how control
is performed in static graphs. Certain actors
in the program graph, called c o n t r o l actors,
determine a t run-time the actual execution
pattern for the graph, e.g.. which subgraphs
are executed, and how many loop iterations or
recursive calls are invoked. Examples of
control actors include greater than, less than.
equal to, switches, and merges. If static graphs

are used we must use control actors to
determine the actual execution pattern.
Control actors have very small granularity,
often with only a single instruction. There
can be many control actors even for simple
operations such as unrolling a loop or
performing conditional and case statements.
Further, we must pay the communication and
scheduling overhead for each control actor
executed just as we do for larger grain actors.
We can eliminate much of the control
overhead by moving the control of subgraph
selection and unrolling into actors and by
allowing the actors to construct subgraphs at
run-time that reflect the effects of performing
the control function internally.

To represent program graphs that satisfy
our goals of decentralized control, context
independence, and dynamic elaboration with
delayed binding, Mentat introduces a new
implementation technique for macro data-flow
called futures and future lists. Each actor
receives a list of futures with its input tokens.
The list of futures describes what happens
after the actor has completed its computation.
It is a set of directed data-flow graphs for
which the actor is the greatest common
ancestor. Each future in the list of futures
describes a directed graph tha t corresponds to
a particular outgoing arc from the actor. A
future fist is a list of futures. Mentat futures
should not be confused with Multilisp futures
1211. Futures are similar in concept to
continuations [22, 231. Unlike a Scheme
continuation, which specifies an ordered
sequence of events, a future describes a
directed graph with many possible parallel
paths.

Each future has two components, an
arc-instance and a future list. Each
arcjnstance describes an arc between two
nodes in a subgraph. Since the source is
implicit, the arcjnstance is the name of a
destination node that is t o receive a copy of
the output token. In particular the
arcinstance contains information about which
instance of the destination actor is to be used
and to which input of that actor the arc is

connected. Because the same subgraph may
be used many times, possibly concurrently,
the arcjnstance also contains a computation
tag that specifies which instantiation of the
graph the token is for. Computation tags are
similar to token colorings IS]. In addition to
the arcjnstance, each future also contains a
future list.

futurelist == future
future futurelist I
passive 1 E

future -- -- (arcjnstance futurel is t)

Lpon completion of the the actor
computation, an output token containing the
result and the appropriate future list is sent t o
each arcinstance named in each future of the
actor's future list. When an actor requires
two or more tokens, all but one of the received
future lists are redundant. The use of a
passive future list in a message indicates t ha t
some other token to the actor carries the
future list for the actor. Passive future lists
are usually short.

Figure 1 illustrates the correspondence
between a future list and a portion of a
program graph. A receives the following
future list:

(< B , op l , a rg l> (< D , opl ,argl> E))
(<C, op l , a rg l> (<D, opl,arg2> E))

A sends a copy of its results t o
<B,opl,argl> and <C,opl ,argl>. B
receives a future list of (<D,opl ,argl> e),
and C receives a future list of (<D,opl,argZ>
e). B and C, upon completion, send their
results t o D. Beyond D the future is not

n

Figure 1. Correspondence to Graphs

specified.
An actor may construct new future lists,

augment its own future list, and s tar t new
subgraphs with the constructed future lists,
The new subgraph that results from these
operations is called the elaborated subgraph of
the actor. The elaboration into subgraphs is
completely hidden from users of the actor.
The elaborated subgraph of an operation is
not necessarily the same every time the
operation is executed.

Elaboration of the program graph can be
accomplished in one of two ways. First? an
actor can construct a future list that consists
of the specification of the elaborated subgraph
and the current future list. Its results are
forwarded to the elaborated subgraph, and the
results of the elaborated subgraph are
forwarded to its future. The second method
involves the construction of a new elaborated
subgraph in which the output of the new
subgraph is sent to the current future list. The
new elaborated subgraph may include initial
tokens on the arcs. The initial tokens are
provided by the constructing node.

The use of future lists as a graph
description mechanism allows graph control to
be completely decentralized. Each actor
receives enough of the program graph to
continue the computation. There is no need
to coordinate the execution of separate
subgraphs, and their execution may proceed
independently. Furthermore, it is not
necessary for the entire program graph to be
generated a t compile time. Indeed, the
structure of the graph is only implied, and
changes as actors modify their future lists.

Future lists can also be used to provide
alternative paths of execution in the event
that special conditions arise. For example,
suppose that there is a database server actor
and the actor is passed several future lists.
The first is used after the successful
completion of the database operation. The
second is used for recovery if the database
operation fails. The third is used if a security
violation is detected. Each of the future lists
represents a subgraph to be invoked by the

database server on behalf of the caller when
the corresponding condition is true a t
completion. Invocation of a subgraph is
equivalent to sending tokens to the source
nodes of the subgraph and sending the future
lists that define the subgraph with the tokens.

2.3. Mapping Objects to Macro Data
Flow

An object-oriented approach to software
design and impiementation provides the ideal
support for the design and development of
macro data-flow programs. In Mentat, macro
actors are realized as external operations of
Mentat objects. This section discusses the
relationship between objects and actors, the
naming of objects and actors, and the
construction of future lists.

2.3.1. Objects, Actors, and Tokens
Before describing Mentat objects, we

must differentiate between independent and
contained objects [24). Independent objects are
objects t ha t have disjoint address spaces.
Contained objects do not have disjoint address
spaces. An independent object may contain
many contained objects. Contained objects
may communicate with one another and with
the independent object containing them using
shared memory via pointers or the stack.
Independent objects may communicate with
one another only via messages. Thus, if
message passing is cheap, all objects should be
independent objects. If message passing is
expensive, only computationally complex
objects should be independent. Mentat
permits both independent objects and
contained objects. However. objects declared
as Mentat objects are independent objects.

Each instance of a Mentat object consists
of four components: a name. a representation
of the data stored in the object. a set of
externally visible operations, and an
independent thread of control. The set of
externally visible operations is the object’s
interface. The actual implementation of an
operation frequently makes use of other
objects and operations. How the operations

are performed, either serially or in parallel,
what other objects are used, and the internal
representation of data structures are not
visible to any outside object.

In Mentat, macro data-flow actors are
an abstraction implemented by the operations
of objects. For example, a n encryption object
would have a single operation that requires
two parameters, text and key. It implements
a single actor with two input arcs, one for
each parameter. A queue object may have five
operations: full, empty, clear. enqueue, and
dequeue, each corresponding to an actor.
These operations could easily be implemented
without referencing other Mentat objects. In
general a Mentat object operation may be
implemented using other object operations. In
this case an elaborated subgraph is
constructed.

An operation of a Mentat object is
invoked by sending a set of messages (tokens)
to the object, one for each parameter. When
all of the parameters for a particular
operation have arrived the corresponding
actor is enabled and the operation is executed.
The marshaling of parameters and sending
them as messages is transparent t o the
programmer.

2.4. The Mentat Language
One problem facing parallel systems

designers is how to simplify the writing of
parallel programs. Proposals range from
automatic program transformation system
such as Paraphrase 1251 which extract
parallelism from sequential programs, to the
use of side-effect free languages [7,8). to the
use of languages and systems where the
programmer must explicitly manage all
aspects of communication, synchronization,
and parallelism j26.27’. The problem with
fully automatic schemes is t ha t they are best
suited for detecting small grain parallelism.
The problem with schemes in which the
programmer is completely responsible for
managing the parallel environment is that
complexity can overwhelm the programmer.

Mentat provides a compromise solution.
Programmers are responsible for identifying
those objects that are of sufficient
computational complexity to allow efficient
parallel execution, and the compiler and run-
time system are responsible for managing
parallelism, communication, and
synchronization. In order t o exploit these
capabilities programs must be written in the
Mentat programming language. Rather than
create a new programming language, the
Mentat programming language is an extended
C+- [4!. A preprocessor takes source code in
the extended language and automatically
generates code to perform run-time data-flow
detection and macro data-flow graph
construction. Users specify those object classes
that are to be transformed into macro data-
flow actors. Instances of these classes are used
normally. The system will automatically
generate the macro data-flow graphs for the
program, reducing the programming effort
required.

There are five principle extensions t o the
C++ language: Mentat classes, the member
functions create() and destroy(), the return-
to-future (rtfl)) mechanism, the
se lec t /accept (guarded) statement, and the
member function main() for each Mentat
class. Below we examine each briefly. A more
complete description of the language can be
found in [15].

2.4.1. Mentat Class Definition
Mentat classes are the mechanism for

specifying Mentat actors. Each actor is
implemented by an operation of a Mentat
object, and each Mentat object is composed of
one or more actors. In C--. objects are
defined by their class. Each class has an
interface section in which member variables
and member functions are defined. Sot all
class objects should be Mentat objects. In
particular, objects that do not have a
sufficiently high communication ratio, i.e., the
object operations are not computationally
complex enough, should not be Mentat
objects. To provide the programmer a way to

control the degree of parallelism, Mentat
allows both standard C++ classes and Mentat
classes to be defined. By default, a standard
C++ class definition defines a standard C++
object. Standard C l ~ c objects and variables
are contained objects contained in their
lexically enclosing Mentat class. The
programmer defines a Mentat class by using
the keyword MENTA T in the class definition.
He may specify whether the class is
PERSISTENT or REGULAR, as in the
following example.

PERSISTENT MENTAT class bigmatr ix

public:
/ / private data and member functions

vector gaussslim();
... more member functions

I;
Persistent and regular class definitions
correspond t o persistent and regular objects.

2.4.2. Create and Destroy
T o instantiate and destroy instances of

Mentat objects we have added two new
reserved member functions for all Mentat
class objects: create() and destroy(). These
functions are inherited from the base class
Mentat and can be overloaded by the
programmer of the class. The create()
function is used to instantiate new instances of
Mentat classes. It takes as parameters user-
provided initialization information. Create()
also allows the user the option of specifying
where the new instance is t o be instantiated,
e.g., on a different processor, or on the same
processor as another Mentat object. Thus, the
programmer can give the underlying system
information tha t will be useful in making
instantiation decisions and thus influence
where the new object is actually instantiated.

2.4.3. Return to Future (rff())
The function rtf() is the Mentat analog

to the return() of CT-. Its purpose is to
allow Mentat member functions (actors) t o
return a value to the successor nodes in the
macro data-flow graph in which the member
function appears. The r t f o does not, however,

mark the end of the actor computation.
Rtf() takes two types of arguments, local

variables or constants, and subgraphs. Local
variables must satisfy the same restrictions
that apply to Mentat arguments: i t must be
possible to determine their length, and they
must be contiguous in memory. Subgraphs are
automatically generated, and their use is
transparent to the programmer. Returning a
subgraph using rtf() is the mechanism for
actor subgraph elaboration.

The following example illustrates both
how rtf() is used and how program graphs are
automatically constructed. The code
fragment for object operation opl appears in
Figure 2 . If ezpression(input) is TRUE, then
opl will generate a token containing the value
5 that will be forwarded to opl 's successor. In
this case there is no subgraph elaboration. If.
on the other hand, ezpression(input) is
FALSE, then a subgraph will be generated for
opl at run-time. The actual subgraph
generated 'will depend on the value of
ezpressionflocal-variable). If i t is TRUE, then
the subgraph shown in Figure 3 will be
generated for opl at run-time. The result of
the new subgraph will be directed to the
successor of o p l . We would like t o emphasize
that the generation of subgraphs is entirely
transparent t o the programmer. The
mechanism used t o automatically generate
subgraphs is discussed in more detail in 1151.

if expression(input) I rtf(5);
else I

w=.koperation1(4,5);
x=B.operationl(w,2);
if expression(local-variable)

y=C.operation1(4,w); '
else

y=C.operation l(w:x);
z=D.operation l(y,w,x);
rtf(2);

I .
I 1

Figure 2 . Code for o p l .

4 5

Figure 3. Subgraph generated at run-time.

2.4.4. Guards
The Mentat programming language has a

select/accept statement that is similar to the
ADA 128; select,/accept. Unlike ADA guards,
Mentat guards may contain the formal
parameters of the member function being
guarded and message tag information such as
the sender or computation tag. Assignment
statements are disallowed in guards to prevent
side effects. This feature provides the ability
to selectively receive messages based upon
their contents and was inspired by PLITS (29;.

Guards are evaluated in the order of
their priority. Within a given priority level
each of the guards is evaluated in some non-
deterministic order. Each guard is evaluated
in tu rn until one of the guards is true; the
corresponding statement-list for t ha t guard is
then executed. When the statement-list
associated with the guard has been executed.
control passes to the next statement beyond
the select. 1

2.4.5. The Member Function Main()
The member function main/) is a

reserved function name for Mentat clzuses. It
is the initial thread of control for new
instances of a Mentat class. The function
body may be any sequence of extended CA+
statements. Usually main() will consist of an
initial select/accept to accept the create call
for the class, if one exists. Then, once the

create has been executed, a loop is entered in
which there is a select statement with an
accept for each member function of the class.
If no main() is provided by the programmer
one will be generated for the class.

3. The Mentat Virtual Machine
The Mentat virtual machine is an

idealized machine for executing macro data-
flow programs on a variety of hardware
architectures. The virtual machine presents
the image of a single logical machine to
programmers. The virtual machine is a
three-level abstraction. The highest level is
very similar to traditional data-flow
machines. The \ two lower levels of the
abstraction permit modeling of single CPL
systems, shared memory m ul t i processers ,
loosely coupled systems (e.g., hypercube), and
combinations of the three as specific instances
of the model. Various components of the
machine are responsible for tasks tha t support
token matching, object instantiation, -object
management, scheduling, communication. and
actor computation.

3.1. The System Level
The highest level of abstraction is the

system level. The system level of abstraction
defines an abstract machine tha t is similar t o
traditional data-flow hardware architectures.
There are three components of the
abstraction: the interconnection network, the
computation units (called), and the matching
unit & token store, as shown in Figure 4. The
three components perform the same functions
a in traditional architectures. In traditional
architectures the matching unit matches
tokens for actors and sends the actors with
their tokens via the interconnection network
to the computation units. The computation
units execute the actor, and return the results
to the matching unit via the interconnection
network. The corresponding Mentat virtual
machine components are described next.

The global matching unit is a single
logical entity with two principle functions:

b

L

TOktXl

Storage

_j

Figure 4. System Level of Abstraction.

first, t o store state objects, code objects, and
tokens; second, t o match tokens and construct
work units for the computation units. The
global matching unit matches tokens and
determines when an actor is ready to fire.
Enabled actors, with their tokens and code,
are packaged into work units. A work unit
(WV) is a tuple (code, state, actor number,
token-list). A work unit contains all of the
information needed by. a,computation unit to
execute an actor: code; state, and input
tokens. The work units are sent via the
interconnection network to an idle
computation unit. The global matching unit
receives an initial set of tokens and state
objects to begin the matching task. Then, as
computation proceeds, tokens and s ta te
objects are consumed and new ones are
received from the computation units.

The interconnection network provides
communication services between the
computation units and the global matching
unit. At this level of abstraction all
computation units are equidistant from the
global matching unit. The communication is
error free with guaranteed delivery.

The computation units (CV) accept work
units from the global matching unit. perform
the computation, and send the results back to
the global matching unit. They are pure
functional units. The output of a computation
unit depends solely on the contents of the

work unit. Thus any computation unit may be
used to execute any work unit. When a
computation is complete the computation unit
constructs a result package and sends it via
the interconnection network to the global
matching unit. The result package is a tuple
(state, token-list). The s ta te is the new state
for the actor t ha t was just executed. The
token-list is a list of output tokens tha t the
actor generated. Once the result package has
been sent the computation unit is ready to
accept another work unit.

The problem with the system level of
abstraction just presented is the centralized
nature of the global matching unit. All token
matching, storage, and actor scheduling is
done by a single entity. If the global matching
unit (or its communication channels) becomes
overloaded then there will be idle computation
units and the performance of the system will
suffer. In a distributed system such a bottle
neck is undesirable. Since Mentat is designed
for distributed systems, this level of
abstraction is not appropriate. The global
matching unit should appear to be a single
entity, but i t can actually be a distributed
entity. Further, the machine should take
advantage of localities. It is much cheaper, for
instance, t o send a work unit to some
computation units t ha t others. These issues
provide the motivation for the middle level of
abstraction.

3.2. The Processor Level
The idealized macro data-flow machine

is as shown in Figure 4. However, in
distributed systems. the matching unit is
fragmented, and the cost of communicating
from a parkicular portion of the matching unit
t o different computation units varies. The
fragmentation of the matching unit is
accounted for in the processor level of
abstraction shown in Figure 5. This middle
level more accurately reflects actual hardware
configurations likely to be found in a
distributed system.

In the processor level there are man!
focal matching units (LMUs). Each local

a -

(.

Local Matching Unit

Interconnection Network
i I

Local Matching Unit t

Figure 5 . Intermediate Level of Abstraction.

matching unit has associated with it one or
more computation units. The existence of
more than one associated Computation unit
could indicate either that multiple virtual
computation units are mapped onto a single
processor, or that one of the nodes is a shared
memory maltiprocessor such as the Encore
Multimax. By definition, it is cheaper in time
and/or resource use for a local matching unit
to communicate with its associated
computation unit(s) than with other
computation units.

The function of the global matching unit
in the system level is actually performed in a
cooperative manner by the local matching
units in the prdcessor level. Thus, in addition
to sending work units to, and receiving result
packages from, called, the individual local
matching units must communicate and
coordinate with each other. Hence, local
matching units are more complex than the
global matching unit.

.

3.3. The Local Machine Level
The lowest level of the abstraction

consists of the actual implementation of the
LMlj's. The LMI: itself consists of many
components: the local message handler, the
inter-LMC message handler, and the token
matchers for instantiated and uninstantiated
objects that implement the global matching
unit. The token matcher for un-instantiated

objects in particular is complicated by the
distributed nature of the matching problem:
how can we know where a matching token
resides, or if i t has even been generated yet?
For a more complete description of the LML'
implementation see 115:.

4. Statue
Mentat has been implemented on a ten-

processor Encore Multimax. The
implementation consists of two parts, the
programming support and a virtual machine.
Implemented Mentat tools include a
preprocessor that transforms extended C--
programs to C-+ source or object code and a
set of library routines accessible t o the
preprocessor that provides an interface to the
virtual machine.

The virtual machine executes macro
data-flow programs that have been prepared
using the preprocessor. The prototype can
simulate a wide variety of Mentat
configurations. The number of hosts, the
number of processors on each host, the
interconnection topology between hosts, and
the speed of the communication links can all
be specified. Thus, one can simulate Mentat
executing on a hypercube, a mesh, or a single
shared bus system.

To demonstrate the performance of
Mentat we executed Gaussian elimination
using the partial pivot ing method as a
benchmark. Two versions were prepared. The
first is a serial version written in C and
executed in a single Unix process. The second
w s written for Mentat execution using
persistent actors. Both programs were run on
matrices of dimension 100. 200. 300. 400. and
500. Figure 6 shows the execution times for
the serial version. and for Mentat configured
as a 4 LMI- hypercube, a 6 LMY shared bus.
and an 8 L-ML- hypercube. The Mentat
versions are clearly superior. particulariy in
the larger dimensions. The corresponding
speed-upe are shown in Figure 7.

Graph Labels
-+- Serial
... 2-D Hypercube
- - - 6 processor bus
- 3-D Hypercube

7i 1000 -.
Time,
Seconds 500 -

-
100 200 300 400 560

Dimension
Figure 6

I / i

160 200 360 460 5bO
Dimension
Figure 7

1 .i

The primary cause of the low speed-ups
observed in the lower dimensions is the
relatively high communication ratio,
particularly in the eight LMU hypercube
version where the tokens have to travel up to
three hops. The communication ratio is also
affected by the machine overhead and run-
time graph construction overhead. Both grow
linearly with the dimension of the matrix
while the amount of computation is O(n3).
Thus, as the dimension of the matrix increases
the communication ratio decreases.

5. Summary
In this paper we presented a high level

overview of the object-oriented macro data-
flow system called Mentat. We discussed the
design goals of Mentat. the macro data-flow
model of computation, future lists, the Mentat
programming language, and the Mentat
virtual machine.

The preliminary results on performance
of Mentat are encouraging. The next step is to
develop a full scale Mentat simulator that
provides accurate timing predictions for large
numbers of virtual processors. Then, if
simulation results show continued
improvement, we will implement Mentat on
an actual distributed system of SUN'S, IBM's,
or Macintosh 11's. Such a distributed version
would prbvide the most convincing evidence of
the efficacy of the Mentat approach.

Concurrent with the development of an
improved simulator an actual application
should be developed using the Mentat
language. This is important for two reasons.
First, since ease of programming is a design
goal, we must evaluate how difficult Mentat is
to program for non-specialists. i.e., people not
involved in the Mentat design. Second, we
must demonstrate that Mentat can exploit
significant parallelism in real-world
applications. Before any system can move out
of the lab i t must be shown to be useful on
non-contrived problems. .Thus we must
implement an actual application-such as ray-
tracing or a Monte-Carlo simulation. The
implementation of actual applications would
realistically demonstrate the effectiveness of
the Mentat approach.

References
Charles L., "The Cosmic Cube,"
Communications of the ACM, pp.22-33,vol.
28, 1985.
UMAX 4.3 Release Notes, Encore Computer
Corporation, Marlbrough, Massachusetts,
1987.
Osterhaug, Anita,"GUIDE TO PARALLEL
PROGRAMMING On Sequent Computer
Systems."Sequent Technicai Publications.
Sequent Computer Systems, Beaverton. OR.
1986.
Stroustrup, B., The C- - Programming
Language, Addison-Wesley Publishing
Company, Reading, Massachusetts. 1986.
Dennis, J., "First Version of a Data Flow,
Procedure Language." MIT TR-673. May,
1975.

[13!

(143

115;

[16:

Agerwala, T., and Arvind, “Data Flow
Systems,” IEEE Computer, vol. 15, no. 2,
pp. 10-13, February, 1982.
Ackerman, W. B., “Data Flow Languages.”
IEEE Computer, vol. 15, no. 2, pp. 15-25,
February, 1982.
McGraw, James R..“The VAL Language:
Description and Analysis,” A C M
Transactions on Programming Languages
and Systems, pp. 44-82, vol. 4, no. 1,
January, 1982.
Srini, V. P., “An Architectural Comparison
of Dataflow Systems,” IEEE Computer, pp.
68-88, March, 1986.
Veen, Arthur H., “Dataflow Machine
Architecture,” ACM Computing Surveys, pp.
365-396, vol. 18, no. 4, December, 1986.
Babb, R. F., “Parallel Processing with
Large-Grain Data Flow Techniques.” IEEE
Computer, pp. 53-61, July, 1984.
Gaudiot, J. L., and M. D. Ercegovac.
“Performance Analysis of a Data-Flow
Computer with Variable Resolution Actors,”
Proceedings of the 1964 IEEE Conference on
Distributed Systems, 1984.
Liu, J. W. S., and A. S. Grimshaw, “A
Distributed System Architecture Based on
Macro Data Flow Model,” Proceedings
Workshop on Future Directions in
Architecture and Software, South Carolina,
May 7-9, 1986.
Liu, J. W. S., and A. S. Grimshaw, “An
object-oriented macro data flow
architecture,” Proceedings of the 1986
National Communications Forum,
Sep tern ber, 1986.
Grimshaw, Andrew S., “Mentat: An Object-
Oriented Macro Data Flow System,”
University of Illinois, TR UIUCDCS-R-88-
1440, June, 1988.
Hoare, C.A.R.,“Monitors: An Operating
System Structuring Concept.”
Communications of the A C M pp.549-55i9
vol. 17, no. 10, October, 1974
Arvind and J . D. Brock, “Resource Managers
in Functional Programming,” Journal of
Parallel and Distributed Computing, vol.1.

Occam Programming Manual, Inmos Ltd,
Prentice-Hall, New York, 1984.
Hoare, C.A.R.,“Communicating Sequential
Processes,” Communications of the .4CM1 pp.

pp. 5-21, 1984.

666-677, August, 1978.

[20] Goldberg, A., and D. Robson, Smalltalk-80:
The Language and i t s Implementation,
Addison-Wesley, Reading, ,MA, 1983.

!21; Halstead, Robert H. Jr., “Multilisp: A
Language for Concurrent Symbolic
Computation,” AC.U Transactions on
Programming Languages and Systems, pp.
501-538, vol. 7, no. 4 , October, 1985.
Abelson, H., Sussman, G. J., and J. Sussman,
“Structure and Interpretation of Computer
Programs,” The MIT Press, Cambridge
Massachusetts, 1985.
Stoy, J. E., “Denotational Semantics: The
Scott-Strachey Approach to Programming
Language Theory,” The MIT Press,
Cambridge, Massachusetts, 1977.
Nierstrasz, O.M.,”Hybrid: A Unified Object-
Oriented System,” IEEE Database
Engineering, vol. 8 , no. 4, pp. 49-57,
December, 1985.
Kuck, D., Kuhn, R., Leasure, B., Padua, D.,
and M Wolfe, “Dependence Graphs and
Compiler Optimizations,” A C M Proceedings
of the 8th Annual ACM Symposium on
Principles of Programming Languages, pp.
207-218, January, 1981.
h d r e w s , Gregory R., and Fred B. Schneider,
“Concepts and Notions for Concurrent
Programming,” ACM Computing Surve ys,
pp. 3-44, vol. 15, no. 1 , March, 1983.
Filman, Robert E., and Daniel P. Friedman,
COORDINATED COMPUTING Tools and
Techniques for Distributed Software,
McGraw-Hill Book Company, New York,
1984.
Reference Manual for the Ada Programming
Language, United States Department of
Defense, Ada Joint Program Office, July
1982.

‘291 Feldman, J. A.,“High Level Programming
for Distributed Computing,”
Communications of the ACM, pp. 333-368.
vol. 22, no. 6, January, 1979.

’221

!23j

[24]

:25]

[26]

[27]

i28]

